Submonotone Subdifferentials of Lipschitz Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

^-representation of Subdifferentials of Directionally Lipschitz Functions

Subdifferentials of convex functions and some regular functions f are expressed in terms of limiting gradients at points in a given dense subset of dorn Vf.

متن کامل

Integrability of Subdifferentials of Directionally Lipschitz Functions

Using a quantitative version of the subdifferential characterization of directionally Lipschitz functions, we study the integrability of subdifferentials of such functions over arbitrary Banach space.

متن کامل

Lipschitz functions with maximal Clarke subdifferentials are staunch

In a recent paper we have shown that most non-expansive Lipschitz functions (in the sense of Baire’s category) have a maximal Clarke subdifferential. In the present paper, we show that in a separable Banach space the set of non-expansive Lipschitz functions with a maximal Clarke subdifferential is not only of generic, but also staunch. 1991 Mathematics Subject Classification: Primary 49J52.

متن کامل

Characterization of the Subdifferentials of Convex Functions

Each lower semi-continuous proper convex function f on a Banach space E defines a certain multivalued mapping of from E to E* called the subdifferential of f. It is shown here that the mappings arising this way are precisely the ones whose graphs are maximal "cyclically monotone" relations on Ex E*, and that each of these is also a maximal monotone relation. Furthermore, it is proved that of de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1981

ISSN: 0002-9947

DOI: 10.2307/1998411